Inactivation of [Fe-S] Metalloproteins Mediates Nitric Oxide-Dependent Killing of Burkholderia mallei
نویسندگان
چکیده
BACKGROUND Much remains to be known about the mechanisms by which O(2)-dependent host defenses mediate broad antimicrobial activity. METHODOLOGY/PRINCIPAL FINDINGS We show herein that reactive nitrogen species (RNS) generated by inducible nitric oxide (NO) synthase (iNOS) account for the anti-Burkholderia mallei activity of IFNgamma-primed macrophages. Inducible NOS-mediated intracellular killing may represent direct bactericidal activity, because B. mallei showed an exquisite sensitivity to NO generated chemically. Exposure of B. mallei to sublethal concentrations of NO upregulated transcription of [Fe-S] cluster repair genes, while damaging the enzymatic activity of the [Fe-S] protein aconitase. To test whether [Fe-S] clusters are critical targets for RNS-dependent killing of B. mallei, a mutation was constructed in the NO-induced, [Fe-S] cluster repair regulator iscR. Not only was the iscR mutant hypersusceptible to iNOS-mediated killing, but its aconitase pool was readily oxidized by NO donors as compared to wild-type controls. Although killed by authentic H(2)O(2), which also oxidizes [Fe-S] clusters, B. mallei appear to be resilient to NADPH oxidase-mediated cytotoxicity. The poor respiratory burst elicited by this bacterium likely explains why the NADPH oxidase is nonessential to the killing of B. mallei while it is still confined within phagosomes. CONCLUSIONS/SIGNIFICANCE Collectively, these findings have revealed a disparate role for NADPH oxidase and iNOS in the innate macrophage response against the strict aerobe B. mallei. To the best of our knowledge, this is the first instance in which disruption of [Fe-S] clusters is demonstrated as cause of the bactericidal activity of NO congeners.
منابع مشابه
Protection from pneumonic infection with burkholderia species by inhalational immunotherapy.
Burkholderia mallei and B. pseudomallei are important human pathogens and cause the diseases glanders and melioidosis, respectively. Both organisms are highly infectious when inhaled and are inherently resistant to many antimicrobials, thus making it difficult to treat pneumonic Burkholderia infections. We investigated whether it was possible to achieve rapid protection against inhaled Burkhold...
متن کاملiNOS activity is critical for the clearance of Burkholderia mallei from infected RAW 264.7 murine macrophages
Burkholderia mallei is a facultative intracellular pathogen that can cause fatal disease in animals and humans. To better understand the role of phagocytic cells in the control of infections caused by this organism, studies were initiated to examine the interactions of B. mallei with RAW 264.7 murine macrophages. Utilizing modified kanamycin-protection assays, B. mallei was shown to survive and...
متن کاملComparative genomics and an insect model rapidly identify novel virulence genes of Burkholderia mallei.
Burkholderia pseudomallei and its host-adapted deletion clone Burkholderia mallei cause the potentially fatal human diseases melioidosis and glanders, respectively. The antibiotic resistance profile and ability to infect via aerosol of these organisms and the absence of protective vaccines have led to their classification as major biothreats and select agents. Although documented infections by ...
متن کاملA comparison of virulence of intraperitoneal infection of Burkholderia mallei strains in guinea-pigs
Male guinea pigs show high susceptibility to Burkholderia mallei and have been used as animal models in glanders studies. The purpose of our study was to elucidate glanders comparative pathogenesis in guinea pigs. We present here the histological changes and bacterial isolation that develop over time in guinea pigs inoculated intraperitoneally (IP) with two strain of B. mallei. Ten male guinea ...
متن کاملIntracellular survival of Burkholderia cepacia complex isolates in the presence of macrophage cell activation.
Strains of the Burkholderia cepacia complex have emerged as a serious threat to patients with cystic fibrosis due to their ability to infect the lung and cause, in some patients, a necrotizing pneumonia that is often lethal. It has recently been shown that several strains of the B. cepacia complex can escape intracellular killing by free-living amoebae following phagocytosis. In this work, the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS ONE
دوره 3 شماره
صفحات -
تاریخ انتشار 2008